小学数学基础知识

大青花鱼

目录

1	数和	数字	4
	1.1	十进制自然数比较大小	4
2	四则	运算	5
	2.1	称呼	5
	2.2	基本法则	5
	2.3	运算顺序	6
3	自然	数的运算	6
	3.1	自然数加法的计算	6
	3.2	自然数减法的计算	7
	3.3	自然数乘法的计算	8

目录	2
日水	\mathcal{L}

		3.3.1	九九	乘法	表 .	•					 •					•		8
		3.3.2	多位	数乘	个位	数					 •					•		9
		3.3.3	多位	数乘	多位	数			•		 •	•						9
	3.4	自然数	除法	的计算	算 .								•					10
		3.4.1	带余	除法		•												10
		3.4.2	竖式	计算	除法				•									11
4	数论																	12
	<i>></i> ,,,,,																	
	4.1	倍数和	1因数			•									•			12
	4.2	素数与	i合数			•												13
5	乘方																	13
6	分数																	13
	6.1	倒数 .									 •		•					14
	6.2	约分.				•												14
	6.3	分数的	表示	方法		•				 •			•					14
	6.4	分数比	较大	小.							 •					•		15
	6.5	分数的	加则	运算												•		15
		6.5.1	分数	的加	减法			 •			 •	•				•		15
		6.5.2	分数	的乘	除法						 •		•			•		15
	6.6	用小数	表示	分数														16

目录	3
$\exists \ \mathcal{K}$	\cdot
	9

		6.6.1	小	数转	分数	汝									•				16
		6.6.2	小	数的	加机	或法	去												17
		6.6.3	小	数的	乘法	去													17
		6.6.4	小	数的	除法	去									•				17
	6.7	近似数				•												•	18
7	平面	图形																	18
	7.1	直线和	角			•													18
	7.2	多边形									•			 •	•				20
		7.2.1	三	角形							•					•			20
	7.3	四边形				•													21
	7.4	圆				•													22
	7.5	周长和	面禾	된 .															22

1 数和数字 4

注意:本书不是教材,仅是知识清单。

这个小册子是小学算学和形学基础知识的一份清单,和《思理入门》一起,作为学习《悟数学》的前置基础。

1 数和数字

自然数是自然诞生的数,源自数数(或者叫计数)。从0开始,不断加1,就能得到任何自然数。

我们用**阿拉伯数字**记录自然数: 0,1,2,3,4,5,6,7,8,9

数的大小:能通过加1从一个数得到另一个数,就说它比另一个数小,另一个数比它大。

我们采用**十进位制**(也叫十进制)表示数。十进位制里逢十进一**位**,添 在左边。左为高位,右为低位。位的名字:个、十、百、千、万、十万、百 万、千万、亿、十亿、……

1.1 十进制自然数比较大小

- 位数多的大,位数少的小。
- 位数相同的,对齐后从高到低比较。遇到第一个不同的,数字大的大,数字小的小。
- 没有不同,则两数相等。

2 四则运算 5

2 四则运算

四则运算指加减乘除。

2.1 称呼

• 加法: 被加数 + 加数 = 和

• 乘法: 被乘数 × 乘数 = 积

• 减法: 被减数 - 减数 = 差

• 除法: 被除数 ÷ 除数 = 商

2+3=5, 2加 3等于 5。

 $2 \times 3 = 6$, 3 乘 2 等于 5, 2 乘以 3 等于 5。

5-3=2, 5 减 3 等于 2。

 $6 \div 3 = 2$, 3 除 6 等于 2, 6 除以 3 等于 2。

2.2 基本法则

- 加法交换律: 交换加数与被加数,和不变。
- 乘法交换律: 交换乘数与被乘数, 积不变。
- 任何数加 0 等于自己。
- 任何数乘 1 等于自己。
- 任何数乘 0 等于 0。
- 加法结合律: 任意三个数相加, 先把前两个数相加, 或者先把后两个数相加, 和不变。
- 乘法结合律: 任意三个数相乘, 先把前两个数相乘, 或者先把后两个数相乘, 积不变。

• 乘法对加法的分配律:两个数分别乘同一个数再相加,等于先相加再乘这个数。

- 减法是加法的逆运算。
- 除法是乘法的逆运算。
- 不能除以 0。

2.3 运算顺序

- 乘除法比加减法优先。
- 括号可以改变运算顺序。
- 先加后减,等于先减后加。
- 先乘后除,等于先除后乘。
- 减差等于先减后加。
- 除商等于先除后乘。

3 自然数的运算

3.1 自然数加法的计算

使用竖式计算自然数的加法。加数可以是两个数,也可以多于两个数。

- 被加数在上,加数在下,个位对齐。
- 从个位开始,从低到高计算。
- 把加数的个位数加起来。每超过十,就减去十,同时在下一位的进位 栏添上一。把结果写在和的个位上。
- 把加数的十位数以及进位栏里的所有一加起来。每超过十,就减去十,同时在下一位的进位栏添上一。把结果写在和的十位上。
- 依此类推,把加数的某位数以及它的进位栏里的所有一加起来。每超

过十,就减去十,同时在下一位的进位栏添上一。把结果写在和的这位上。

7

只要某位上有加数,或它的进位栏里有一,就需要把它们加起来。缺少加数的话,用○补上。直到某位上既没有加数,进位栏里也没有一,就结束。

3.2 自然数减法的计算

使用竖式计算两个自然数的减法。

- 被减数在上,减数在下,个位对齐。
- 从个位开始,从低到高计算。
- 用被减数的个位减去减数的个位。
- 如果被减的数不小于减数,那么把差写到差的个位上,转到下一位。 如果被减的数比减数小,那么从下一位借一当十,把十加上被减的数 后减去减数的差写在差的个位上。在下一位的借位栏里加一。
- 用被减数的十位减去减数的十位。如果借位栏里有一,则先将减数加一。
- 如果被减的数不小于减数,那么把差写到差的十位上,转到下一位。 如果被减的数比减数小,那么从下一位借一当十,把十加上被减的数 后减去减数的差写在差的十位上。在下一位的借位栏里加一。
- 依此类推,用被减数的某位减去减数的同位。如果它的借位栏里有一,则先将减数加一。
- 如果被减的数不小于减数,那么把差写到差的这位上,转到下一位。 如果被减的数比减数小,那么从下一位借一当十,把十加上被减的数 后减去减数的差写在差的这位上。在下一位的借位栏里加一。
- 只要某位上有被减数或减数,或它的进位栏里有一,就需要执行操作。 缺少减数或被减数的话,用〇补上。直到某位上既没有被减数,也没 有减数,进位栏里也没有一,就结束。

3.3 自然数乘法的计算

3.3.1 九九乘法表

九九乘法表

×	1	2	3	4	5	6	7	8	9
1	1	2	3	4	5	6	7	8	9
2	2	4	6	8	10	12	14	16	18
3	3	6	9	12	15	18	21	24	27
4	4	8	12	16	20	24	28	32	36
5	5	10	15	20	25	30	35	40	45
6	6	12	18	24	30	36	42	48	54
7	7	14	21	28	35	42	49	56	63
8	8	16	24	32	40	48	56	64	72
9	9	18	27	36	45	54	63	72	81

九九乘法口诀(背诵):

一一得一	一二得二	一三得三	一四得四	一五得五
一六得六	一七得七	一八得八	一九得九	
二一得二	二二得四	二三得六	二四得八	二五一十
二六一十二	二七一十四	二八一十六	二九一十八	
三一得三	三二得六	三三得九	三四一十二	三五一十五
三六一十八	三七二十一	三八二十四	三九二十七	
四一得四	四二得八	四三一十二	四四一十六	四五二十
四六二十四	四七二十八	四八三十二	四九三十六	
五一得五	五二一十	五三一十五	五四二十	五五二十五
五六三十	五七三十五	五八四十	五九四十五	

3.3.2 多位数乘个位数

使用竖式计算多位数乘个位数。

- 被乘数在上,乘数在下,个位对齐。
- 从个位开始,从低到高计算。
- 用乘数乘被乘数的个位,得到的结果写在加联上起第一行,个位与被乘数的个位对齐。
- 用乘数乘被乘数的十位,得到的结果写在加联上起第二行,个位与被乘数的十位对齐。
- 依此类推,用乘数乘被乘数的某位,得到的结果写在加联往下一行,个位与被乘数的这位对齐。
- 为了防止数位对不齐,可以用○补在结果后面的位上(并非必要)。
- 将加联里所有的结果加起来,得到乘法的结果。

3.3.3 多位数乘多位数

使用竖式计算多位数乘多位数。

- 被乘数在上,乘数在下,个位对齐。
- 从个位开始,从低到高计算。

• 用乘数的个位乘被乘数,得到的结果写在加联上起第一行,个位与被乘数的个位对齐。

- 用乘数的十位乘被乘数,得到的结果写在加联上起第二行,个位与被乘数的十位对齐。
- 依此类推,用乘数的某位乘被乘数,得到的结果写在加联往下一行, 个位与被乘数的这位对齐。
- 为了防止数位对不齐,可以用○补在结果后面的位上(并非必要)。
- 将加联里所有的结果加起来,得到乘法的结果。

3.4 自然数除法的计算

3.4.1 带余除法

带余除法:

被除数 ÷ 除数 = 商 · · · 余数

被除数 = 除数 × 商 + 余数

 $7 \div 3 = 2 \cdots 1$, 3 除 7 得 2 余 1。

余数总是小于除数的自然数。如果余数为 \bigcirc ,就说除数**整除**被除数。例: 3 整除 6。所有不是 \bigcirc 的数都整除 \bigcirc 。

计算带余除法:

- 令余数等于被除数。
- 如果余数小于除数,那么带余除法的商等于○,带余除法的余数就是被除数。
- 如果余数不小于除数,那么从余数中减去除数,同时商加一。
- 不断重复,直到余数小于除数,这时的商就是带余除法的商,这时的余数就是带余除法的余数。

3.4.2 竖式计算除法

- 被除数写在竖式除号里,除数写在左外侧,商写在上方一行(下称商行)。
- 计算从高位到低位。
- 除数有几位,就看被除数的最高几位,作为除头。其余更低位的数称 为除尾。除头应该不小于除数。如果被除数的最高几位比除数小,就 多看一位。如果位数不够,就在被除数个位右边标上小数点,然后在 右边逐位补○,补到位数足够为止。
- 用 1 到 9 作为试商乘以除数,得到试积。其中不大于除头的最大试积,对应的试商就是商的第一位,将它写到商行,与除头的最低一位对齐。
- 将试积写在除头下方,最低位对齐。用除头减去试积,得到余数。余数写在试积下方,最低位和除头、试积对齐。
- 如果余数为〇,且已经没有除尾(或者除尾也都是〇),说明除尽。把商行的数点上小数点(和被除数的小数点对齐),在小数点前的空位补上〇,就得到商。否则从除尾的最高位开始,从高到低,用除尾的数把上一次的余数补成新的除头(除头应该不小于除数)。
- 继续用1到9作为试商,找出不大于除头的最大试积。将对应的试商 写到商行,与除头的最低一位对齐。如果试商和上次的试商中间有空 的位数,就补上○。
- 将试积写在除头下方,最低位对齐。用除头减去试积,再次得到余数。 依此循环操作。
- 如果某次除头和之前完全相同,且两次的除头都是被除数补○得到的, 说明除不尽,结果是循环小数。这时停止计算,不需要把这次的试商 加入商行。这时,从第一次除头对应的试商,到最后一个试商,称为 循环节。

4 数论 12

4 数论

任意多个自然数里,总有最小的数。

4.1 倍数和因数

如果甲数整除乙数,那么乙数是甲数的**倍数**,甲数是乙数的**因数**。例如:3整除6。6是3的倍数,3是6的因数。1是任何数的因数。0是任何数的倍数。

如果两个数的差是某个数的倍数,就说这两个数模这个数**同余**。例如: 18 和 3 的差是 5 的倍数,就说 18 和 3 模 5 同余。

2 的倍数叫做**偶数**,其余自然数叫做**奇数**。偶数能被 2 整除,奇数除以 2 余 1。

偶数加减偶数还是偶数,奇数加减奇数得到偶数,偶数加减奇数得到 奇数。偶数乘以任何数还是偶数,奇数乘以奇数还是奇数。

偶数的个位总是偶数,奇数的个位总是奇数。3的倍数,各位数字加起来也是3的倍数。9的倍数,各位数字加起来也是9的倍数。5的倍数个位总是5或0。10的倍数个位总是0。

两个数共同的因数称为**公因数**,其中最大的称为**最大公因数**;共同的倍数称为**公倍数**,其中最小的称为**最小公倍数**。

两个数的最大公因数是 1, 就说两个数互素。

5 乘方

4.2 素数与合数

如果一个自然数的因数只有 1 和自己,就说它是**素数**。否则说它是**合数**。约定 0 即不是素数也不是合数。

5 乘方

简单介绍乘方:连乘的结果叫做**乘方**。

乘法可以更方便地表示若干个相同的数相加。比如,我们用 3×4 表示 3+3+3+3。那么,能不能方便地表示若干个相同的数相乘呢?

我们把 3×3 称为 3 乘 2 次方, 把 $7 \times 7 \times 7 \times 7 \times 7$ 称为 7 乘 5 次方。

同一个数连乘几次,叫做它乘几次方。连乘的结果,叫做它的几**次方**或 几**次幂**。这种运算叫做乘方或乘幂。

我们把 7 的 5 次方记作 7^5 ,把 7 称为**底数**,把 5 称为**指数**。这样记法,比 $7 \times 7 \times 7 \times 7 \times 7$ 更方便。

一个数的 1 次方就是它自己。一个数的 2 次方也叫做它的**平方**。一个数的 3 次方也叫做它的**立方**。

约定任何数的 0 次方是 1。

6 分数

自然数除法的结果,可以直接用分数表示。分数号是高度居中的横杠。 把被除数写在分数号上方,称为**分子**;把除数写在分数号下方,称为**分母**, 就得到分数。

$$7 \div 3 = \frac{7}{3}$$

6.1 倒数

把分数的分子和分母对换位置,就得到它的**倒数**。○没有倒数。

6.2 约分

如果分数的分子和分母都是某个数的倍数,可以将分子分母同除以这个数,得到分子分母都更小的分数。这个操作叫**约分**。

6.3 分数的表示方法

- 真分数和假分数:分子小于分母,就是**真分数**。分子大于等于分母,就是**假分数**。
- 带分数: 把假分数写成自然数与真分数的和。如果自然数和真分数都不是〇,就把两者放到一起,自然数在前,真分数在后,称为**带分数**。 自然数称为带分数的**整部**,真分数称为带分数的**余部**。
- 可以用带余除法把假分数转为带分数。
- 把分子(被除数)转写为分母(除数)乘商加余数的和,则商就是整部,余数就是余部的分子,除数仍是分母。
- 如果整除,余数为○,则带分数变为自然数。

6.4 分数比较大小

分母相同的分数,分子较大的较大。分子相同的分数,分母较小的较大。 大。

把两个分数的分子和分母分别相加,作为分子和分母,得到的分数,大 小介于两个分数之间。

6.5 分数的四则运算

6.5.1 分数的加减法

使用通分来计算分数的加减法。

- 用被加数的分母乘以加数的分母,得到和的分母。
- 用被加数的分子乘以加数的分母,加上被加数的分母乘以加数的分子,得到和的分子。
- 用被减数的分母乘以减数的分母,得到差的分母。
- 用被减数的分子乘以减数的分母,减去被减数的分母乘以减数的分子,得到差的分子。

6.5.2 分数的乘除法

自然数乘以一个分数,就是除以分母然后乘以分子。

把被乘数和乘数看作分数。分子乘分子作为分子,分母乘分母作为分母。将结果约分。

除以一个数,就是乘以它的倒数。

• 除以几,就是乘以几分之一。

- 除以几分之一,就是乘以几。
- 除以一个分数,就是乘以它的倒数。

比如, 3 除以 8, 可以看作 3 个 1 除以 8, 因此, 又可以看作把 1 除以 8 的结果重复 3 次, 也就是说: $3 \div 8 = 3 \times \frac{1}{8}$ 。

3 除以 $\frac{1}{8}$, 就是 3×8 。

 $3 \div 8 = \frac{3}{8}$,因此 $\frac{3}{8} = 3 \times \frac{1}{8}$ 。因此, $4 \div \frac{3}{8} = 4 \div \left(3 \times \frac{1}{8}\right) = 4 \div 3 \div \frac{1}{8} = 4 \div 3 \times 8 = 4 \times 8 \div 3 = 4 \times \frac{8}{3}$ 。

6.6 用小数表示分数

分数可以用小数的方式表示。通过竖式除法,可以得到分数的小数表示。小数点跟在个位右边,小数记在小数点右边,也用十进制记录。小数点左边是**整数部分**,小数点右边是**小数部分**。竖式除法中,如果通过补〇除尽,就得到有限小数,如果除不尽,就得到循环小数。

十进制位的名字:十分位、百分位、千分位等。和十、百、千位的顺序相反。有限小数只有有限位,或者说之后的位都是〇。从第几位的下一位开始都是〇的小数,就叫几位小数。

小数点左移一位,数值是原来的十分之一;小数点右移一位,数值是原来的十倍。

小数比较大小的方法和自然数几乎一样,只是对齐时要把小数点对齐。 数的整数部分就是带分数的整部,小数部分就等于带分数的余部。

6.6.1 小数转分数

有限小数是整数除以 10、100、1000 等得到的结果。几位小数乘以 10 的几次方,就是整数。因此有限小数可以转为分母为 10 的乘方的分数,然

后约分。

循环小数的**循环节**,是整数除以 10-1、100-1、1000-1 等得到的结果。几位循环节的小数,乘以 10 的几次方减一,就是整数。

6.6.2 小数的加减法

竖式计算小数的加减法:

- 把被加数(被减数)和加数(减数)按小数点对齐,小数位数较少的,
 补○。
- 从最低位开始做加法(减法)。
- 给结果点上小数点(和加减数对齐)。

6.6.3 小数的乘法

最好换成分数相乘,再换回小数。

竖式计算:

- 把被乘数和乘数的最低位对齐。
- 计算乘法。
- 被乘数的小数位数加上乘数的小数位数,就是结果的小数位数。按位数点上小数点,得到结果。

6.6.4 小数的除法

可以换成分数相除,再换回小数。

竖式计算:

• 如果除数是小数,就把被除数和除数的小数点同时向右移动相同的位

数,直到除数变成整数。然后开始列竖式计算。

和整数的竖式除法相比,要注意的是:被除数可能有小数部分。如果被除数有小数部分,就直接在后面接着补○。

• 计算的结果就是真正的结果。不需要把小数点移回去了。

6.7 近似数

通过四舍五入法、进一法、去尾法等方法,可以求出一个数近似于什么数。近似到某位,也说保留到某位,就是找出和原数接近,但某位之后都是〇的数。保留几位小数,就是找出和原数接近,但几位小数之后都是〇的数。

- **去尾法**可以得到比原数小的最大近似数。如果要保留到某位,就舍掉 它之后的部分。
- 进一法可以找到比原数大的最小近似数。如果要保留到某位,就舍掉它之后的部分,并把这一位的数字加一。如果加一导致进位,则按通常加法计算,得出结果。
- 四舍五入法可以找到最接近的近似数。如果要保留到某位,就看下一位的数字。如果下一位数字是 0,1,2,3,4,则舍掉它以及之后的部分。如果下一位数字是 5,6,7,8,9,则舍掉它以及之后的部分,并把这一位的数字加一。如果加一导致进位,则按通常加法计算,得出结果。

7 平面图形

7.1 直线和角

• 线段: 从一点到另一点可以画一条直直的线,叫做**线段**。这两点叫做 线段的**端点**或顶点。

• 射线: 从线段一端出发,往另一端无限笔直延伸,得到**射线**。出发点叫射线的顶点。

- 直线: 从线段两端出发, 分别往另一段无限笔直延伸, 得到直线。
- 补线:一个点把直线分成两条射线。这两条射线互为补线。
- 距离:两点的距离是以它们为端点的线段的长度。
- 角: 角是一个顶点和从它发出的两条射线。这两条射线叫做角的边。
- 始边和终边:从角的一条边出发,逆时针旋转,如果还没到达补线就到达角的另一条边,就说这个角是凸角,规定出发边叫**始边**,到达边叫做**终边**。否则说这个角叫凹角,规定出发边叫终边,到达边叫始边。这样,从始边出发,逆时针旋转,不会在终边前到达补线。
- 角的方向: 从一条边出发,可以顺时针转到另一条边,也可以逆时针转到另一条边。规定逆时针是正方向,顺时针是负方向。从一条边出发,逆时针转到另一条边,这样形成一个正角。从一条边出发,顺时针转到另一条边,这样形成一个负角。始边到终边,总形成正角。
- 角的大小: 把两个角的顶点对齐, 再把始边对齐。如果终边也对齐, 就 说两个角一样大。如果从一个角的终边出发, 可以顺时针转到另一个 角的终边, 就说这个角比另一个角大; 否则就说它比另一个角小。
- 平角:一个点把直线分成两条射线,叫做**平角**。平角由同一顶点出发的两条互补线构成。
- 补角:从平角的顶点再画一条射线,把平角分成两个角。这两个角互为**补角**。
- 直角:如果两个补角一样大,就说它们是**直角**。
- 锐角和钝角:如果一个角比它的补角大,就说它是**钝角**,说它的补角是**锐角**。
- 角度: 我们把平角从始边到终边 180 等分,每份称为 1 度。平角一共有 180 度。直角有 90 度。钝角介于 90 和 180 度之间,锐角介于 0 和 90 度之间。
- ○角: 始边和终边重合的角叫做 ○角。一条射线可以理解为 ○角。
- 角的加减法: 两个角的顶点对齐后,把一个角的终边和另一个角的始

边对齐,那么这个角的始边到另一个角的终边就叫做两个角的和角。 把两个角的终边对齐,两角的始边就形成两个角的差角。两个角一样 大,差角就是〇角。否则较大角的始边到较小角的始边是正角。

- 平行: 两条直线不相交,就说它们**平行**。两条线段、射线所在的直线 不相交,就说它们平行。
- 交角:两条直线相交,以交点为顶点,两条直线的某条边为边,形成的角,叫做两条直线的**交角**。
- 垂直: 交角是直角, 就说两条直线垂直。
- 垂线: 过直线外一点恰好可以画一条和它垂直的直线,称作这个点到它的**垂线**。垂线和直线交于一点,叫做**垂足**。点到垂足的线段长度叫做点到直线的距离。
- 两条直线平行,从其中任一条直线上任一点到另一条直线的距离不变, 称为这两条平行直线的距离。

7.2 多边形

线段首尾相连,得到多边形。线段称为**多边形的边**;线段的端点称为**多** 边形的顶点。

7.2.1 三角形

三个线段首尾相连,得到**三角形**。三角形有三条边,三个顶点。每个顶点属于两条边,称为它的**邻边**;第三条边称为它的**对边**。每个顶点和两条邻边所在射线构成的角,从始边到终边,称为三角形关于这个顶点的**内角**。内角的补角称为三角形关于这个顶点的**外角**。三角形有三个内角。

三角形三个内角之和等于平角,即 180 度。

如果三角形有一个内角是直角,就说它是直角三角形。如果有一个内

角是钝角,就说它是**钝角三角形**。如果三个角都是锐角,就说它是**锐角三角形**。

如果三角形的三条边中有两条边等长,就说它是**等腰三角形**,等长的两条边称为它的**腰**。如果三边都等长,就说它是**正三角形**。

三角形的顶点到它对边的距离,称为过这个顶点的高,这时对边称为 底边。

7.3 四边形

四个线段首尾相连,得到**四边形**。四边形有四条边,四个顶点。每个顶点属于两条边,称为它的**邻边**。每条边与两个顶点不相连,这两个顶点是另一条边的端点,称为这条边的**对边**。

不属于同一条边的两个顶点连成的线段,称为四边形的**对角线**。四边形有两条对角线。

如果每条边都和对边平行,就说四边形是**平行四边形。平行四边形的 对边总等长**。

平行四边形对边的距离称为这对边的高,这时这对边称为底边。

如果平行四边形顶点的邻边形成的正角总是直角,就说它是**矩形**或方形。矩形的两对边里,如果有一边比另一边长,就说它是**长方形**。较长边的长度叫作长方形的**长**,较短边的长度叫作长方形的**宽**。如果矩形的四条边等长,就说它是**正方形**。矩形的对角线等长。

如果四边形的四条边等长,就说它是菱形。菱形的对角线相互垂直。

如果四边形一对边平行,另一对边不平行,就说它是**梯形**。平行的对边 称为梯形的**底边**,不平行的对边称为梯形的**腰**。较短的底边称为**上底**,较长 的底边称为**下底**,底边的距离称为梯形的**高**。如果梯形两条腰相等,就叫等

腰梯形。如果梯形的一条腰垂直于底边,就叫直角梯形。

7.4 圆

到一点距离相等的所有点组成的图形,称为**圆**。这点称为**圆心**,圆心到圆上一点的距离称为圆的**半径**。过圆心的直线总和圆交于两点,它们互为**对径点**。圆上一点与其对径点的距离称为圆的**直径**。半径是直径的一半。

7.5 周长和面积

多边形的周长是全部边长之和。

多边形的面积是它的边围成的部分的面积。

圆的周长与直径的比是定值,与圆的位置和大小无关。这个比率称为 **圆周率**,记作 π 。圆周率约等于 3.14。

- 正方形的面积是边长乘边长。
- 长方形的面积等于长乘以宽。
- 平行四边形的面积等于底边长乘以高。
- 三角形的面积等于同底边等高的平行四边形的面积的一半,即底边长乘高的一半。
- 梯形的面积等于上底长加下底长的和乘高的一半。
- 菱形的面积等于对角线长度乘积的一半。
- 圆的面积等于半径的平方乘以圆周率。